
This	
 work	
 was	
 performed	
 under	
 the	
 auspices	
 of	
 the	
 U.S.	
 Department	

of	
 Energy	
 by	
 Lawrence	
 Livermore	
 Na?onal	
 Laboratory	
 under	
 Contract	

DE-­‐AC52-­‐07NA27344.	
 Lawrence	
 Livermore	
 Na?onal	
 Security,	
 LLC Release Number:

This	
 work	
 was	
 performed	
 under	
 the	
 auspices	
 of	
 the	
 U.S.	
 Department	

of	
 Energy	
 by	
 Lawrence	
 Livermore	
 Na?onal	
 Laboratory	
 under	
 Contract	

DE-­‐AC52-­‐07NA27344.	
 Lawrence	
 Livermore	
 Na?onal	
 Security,	
 LLC Release Number:

Parallel Discrete Event
Simulation Course

#5

David Jefferson
Lawrence Livermore National Laboratory

2014

LLNL-­‐PRES-­‐650779

1 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Reprise

���2

2 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Conservative
Parallel Discrete Event Simulation of

Static Graph-type Models

���3

3 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Conservative, Graph-oriented Paradigm:

���4

50.7
43.8

37.2

35.1
40.4 38.2

61.0
47.5

40.4
39.0

Static Graph of FIFO, Monotonic Channels

Core conservative graph-oriented algorithm:!!
1) Each object has a static number of input queues, one for each incoming arc in the static communication graph, i.e. one for each other object that ever sends event messages to it.!!
! ! a) Messages from an object to itself require an input channel!
! ! b) An object can have two or more channels to another object or itself -- that is permitted. But the number of such channels must be static (for the time being).!
! ! c) Neither new channels nor new objects can be created. (This condition can be partially relaxed later.)!
! ! d) Channels can be effectively deleted with no problems by the sender using the simple trick of sending a null message with a time stamp of ∞. That is a guarantee !
! ! that no further events will be sent along that channel, so it might as well be destroyed. !
! ! e) Whole objects are effectively deleted if all of their incoming channels are deleted.!!
2) Because of the FIFO property in each channel and the restrictions that the sender must send event messages in nondecreasing time stamp order in each channel (i.e. no timestamp inversions within a channel) we can
generalize as follows: !!

As long as all incoming queues are nonempty, then the unprocessed message with the lowest time stamp that will ever be received by this object is at the head of one of the input queues, the one with
the minimum time stamp. (Of course, there may be ties, so adjust accordingly.)!!

3) So the naïve algorithm is: !
! a) choose the minimum timestamp message from across all of the input queues and execute it!

! b) block if any queues are found to be empty until they are all nonempty

4 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Static Graph PDES Paradigm

• Static directed graph of objects and communication
“channels” for event messages!
• Channels to self OK!
• Multiple channels from one object to another OK!
• Cycles OK!
• No dynamic creation of objects (can be somewhat relaxed)!
• No dynamic addition of channels (can be somewhat relaxed)!

• Channels must transmit messages in FIFO order!
• Event messages must be sent in nondecreasing timestamp order along

each channel!
• The channel itself must be FIFO, i.e. order-preserving

���5

5 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Naïve graph-oriented algorithm

���6

while (true) do {!
! simTime = ∞;"
" for (all input queues Q) {"

" " if (Q.empty()) {"

" " " wait for message to arrive in Q;"

" " }"

" " if (Q.head().timestamp < simTime) ("

" " " q = Q;"

" " " simTime = Q.head().timestamp();"

" " }"

" }"

" if (simTime > StopTime) break;"

 " executeEvent(q.head());"

 " q.removeHead()"

}

Find lowest timestamp event
message across all input queues,
waiting for any empty queue to
be nonempty.

Termination test

Execute the event

Discard the event message

This algorithm is “naïve” because it does not use any lookahead information and is subject to deadlock.

6 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Conservative, Graph-oriented Paradigm

���7

50.7
43.8

37.2

35.1

61
.0

47
.5

40
.4

39
.0

But what if there are empty input queues?

Core conservative graph-oriented algorithm:!!
What if one or more of the input queues is empty? Then there is no way to know whether the sender at the other end of that/those channel(s) will send a message
with a smaller time stamp than those on the non-empty channels.!!
In that circumstance the simulator must block this process/object until such time as at least one more message arrives to make all the empty queue(s) nonempty.!

7 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

End Reprise

���8

8 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

The Problem of Deadlock in conservative
graph-oriented PDES

���9

9 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Deadlock cause by never-used channels

���10

Problem of rarely- or never-used channels

never-used channel

A

B

C

D

50.7
43.8

37.2

35.1

61
.0

47
.5

40
.4

39
.0

42.5

Here is one serious problem with the naïve conservative algorithm. What happens if object C has a channel to A but rarely or never sends event messages along that
channel?Then the input queue associated with that channel at A is almost always, or always, empty! Hence, A is blocked most of the time, or even permanently,
though it has plenty of events queued for execution. C may have progressed to a time (42.5) well ahead of the time of the next event that A will execute, so it cannot
possibly send an event that would cause A to receive a massage in the past. But A does not know this, and thus stays blocked! That leads to A being at the very least
badly delayed or even permanently blocked. And that condition spreads to other objects that A is supposed to send messages to, but can’t. It can also lead to the
blocking of processes that send to A (i.e. B and D) as A runs out of memory buffering their messages and then B and D block for flow-control. In effect, blocking
propagates both forward and backward along directed arcs outward from A. Hence, except in unusual cases (such as a graph with disconnected components) if a
channel is never used, the situation devolves into global deadlock!!!
For this reason, one cannot get around the requirement of a static interaction graph just by deciding to choose as the complete graph connecting all objects to one
another in both directions. Besides requiring O(n**2) storage, that would leave most queues empty most of the time, drastically increasing the deadlock avoidance
problem.!!
Note a highly unusual peculiarity of the conservative, graph-oriented PDES algorithm: An object is slowed down or stopped when work is not sent regularly along
one of the channels to it! An object only progresses smoothly when events are regularly sent to it along every one of its input channels. If it does not get enough
work to do from all of its suppliers, then it blocks!?! Usually failure to give a server work from one of its clients just makes things go faster for the others. But not in this case.!!
This property is responsible for all of the difficulties with conservative algorithms. It is not shared by optimistic algorithms. I know of no other protocol in CS with
this property -- it seems downright perverse!

10 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

The problem of Deadlock around cycles

���11

Any cycle can be the site of a local deadlock which, left untended,
usually grows to become global.

The most worrisome hazard for a conservative PDES is that any directed cycle of queues in the graph can become a local deadlock if all become simultaneously
empty. And the deadlock grows inexorably as the queues to which the objects in the deadlock should be sending messages eventually become empty and thus
block still more objects. Meanwhile long backups of messages may grow in the nonempty queues, causing a flow control problems and further blocking. A local
deadlock such as this, left untreated, will quickly grow to become global.!!
One might try to catch that deadlock while it is still local, and try to prevent or break it somehow. But the fact is that even detecting a “local” deadlock is way too
costly. A deadlock involving only 2 or 3 objects out of a million is computationally way too expensive to monitor for, especially since they may reside in different
places among the thousands of hardware nodes of the underlying cluster. (The deadlock is “local” in the graph sense, but it is not necessarily “local” in the sense of
all vertices being located on one physical node!). However, the cycle does not have to be small. A cycle of empty queues involving very large numbers of objects can
just as easily happen. !!
If the deadlock becomes global (which it will if the graph is connected), that condition is easily detected by periodically counting the number of objects that are not
blocked, and when that total declines to 0, a global deadlock is detected. A global deadlock is breakable. It is always the case that the object(s) with the lowest
timestamped message globally can safely execute even if it has some empty input queues. But it cannot do so until the deadlock becomes global and is detected! In
the mean time, before the deadlock if fully global, more and more objects block, and the degree of parallelism declines to zero. So performance sucks!!!
In fact, we should note that under the Naïve Conservative Algorithm, the any simulation with a cycle (which is practically all) actually starts in or near deadlock (!)
with most queues empty. This is why I call the Naïve Conservative Graph-oriented PDES algorithm “naïve”. A new idea has to be injected to !
make this work. That idea, of course is lookahead.

11 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Approaches to Deadlock Management

• Deadlock management is a central problem for
conservative, graph-oriented simulation!

• Deadlock breaking!
• Be monitoring to detect deadlock!
• Allow deadlock to happen!
• Break deadlock using λ-window algorithm for one cycle!
• Repeat!
• Terrible approach!

• discussed in old literature up until about 15 years ago, but never seriously
used!

• yields low concurrency gets worse with scale not scale!

• Deadlock avoidance!
• Use of lookahead information to calculate LBTS!
• Provide LBTS updates frequently enough that deadlock does not happen!
• (But that is no guarantee of good performance)

���12

12 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Conservative, Graph-oriented Paradigm

���13

30

37
35

42

2
5

2
9

2
8

5
0

22

27
24

44

1
8

3
6

3
2

4
8

A local deadlock can always be safely broken in principle. But not really
in practice.

A cycle of empty event queues is only a deadlock according to the naïve paradigm in which an object always blocks until it all of its queues are nonempty. In
general a not-so-naïve simulator can in principle break such a local deadlock safely by just selecting the lowest time stamped event message among all of the objects
involved in the cycle, and allowing the object it belongs to to processing it. The message with time stamp 24 can be safely processed in this example, in spite of the
fact that another queue in the same object is empty. !!
The problem is that the simulator cannot generally recognize a local deadlock when it happens. There is no fast, scalable algorithm for this. (For any given model,
however, one might create such an algorithm as a special case.)!!
The fact that it is safe to allow an object to execute even though it has an empty queue associated with a channel-to-self is just a special case of this more general
point. Since that case is trivially detectable based on local information only, it was worth singling out.

13 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Local deadlock around a cycle

���14

A local deadlock can always be safely broken in
principle. But not really in practice.

20

22

1821

50
29

28

44 27 24

48
36

32

423735

A cycle of empty event queues is a local deadlock according to the naïve conservative paradigm in which an object always blocks until it all of its queues are
nonempty. In general a not-so-naïve simulator can in principle break such a local deadlock safely by just selecting the lowest time stamped event message among
all of the objects involved in the cycle, and allowing the object it belongs to to processing it. The message with time stamp 24 can be safely processed in this
example, in spite of the fact that another queue in the same object is empty. !!
The fact that it is safe to allow an object to execute even though it has an empty queue associated with a channel-to-self is just a special case of this more general
point. Since that case is trivially detectable based on local information only, it was worth singling out.!!
The problem is that the simulator cannot generally recognize a local deadlock when it happens. There is no fast, scalable algorithm for this in general. (For any
give model, however, one might create such an algorithm as a special case. But that amounts to building a special-purpose simulator.)!!

14 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Airplane Service Event at SFO

���15

1.00

SFO JFK

LAX

ORD

ATL

3.0 hours

5.5 hours

5.0 hours1.0 hours

service time:

1.25 hours

1.00

An Airplane_Service event is processed by the SFO object at 1.00 hours simTime.!!
It takes at least 1.25 hours to turn a plane around on the ground (unloading and loading passengers and baggage, fueling, ground checks). !!
It take at least 3 hours for the fastest plane to fly to ORD, and at least the listed times to fly to the other airports. (Note that a particular plane may fly slower.) So
we can calculate the lookahead for all 4 other airports by summing minimum Service Time and minimum Travel Time.

15 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Lookahead and subsequent events

���16

1.00

SFO JFK

LAX

8.3

ORD

ATL

3.0 hours

5.5 hours

5.0 hours
1.0 hours

service time:

1.25 hours

3.25

7.75

5.25

It turns out that the plane at SFO was heading out to the ATL airport.!!
The processing of the event at SFO leads to sending null messages to ORD, JFK, and LAX indicating the minimum time at which they can possibly get another
plane arriving from SFO.!!
It also leads to scheduling an airplane arrival event at ATL for simTime 8.3 hours. !!
Note that this is later than the minimum possible time for the plane to arrive at ATL, which would be at 1.00 + 1.25 + 5.0 = 7.25. The processing of the event at SFO
accounted for some unexpected (random) ground delays and flight time delays of over another hour.!!
A complication arises if it is possible in the model for two planes, P1 and P2 to both leave SFO for ATL, with P1 leaving before P2 but arriving after P2. That is an
example of an “inversion” and the modeler either has to send the event message for P2 down a different channel (i.e. requiring at least two event message channels
from SFO to ATL) , or it has to delay sending the event message for P1 until after it sends the event message for P2. Neither solution is very elegant. Both require
that when P1 is ready to depart the model anticipates that another plane P2 may depart later but arrive earlier, i.e anticipates the possibility of inversion. This is not
a very clean modeling situation, so this example exposes a weakness in the graph-oriented synchronization paradigm: even though it technically can handle a
bounded number of inversions, inversions mess up the logic. And if a second channel is chosen as the way to deal with the inversion, then it will probably be rarely
used, but a stream of null messages has to be sent down that channel to keep the queue for it in ATL from going empty.

16 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Lookahead transmitted by Null Messages

Lookahead is a guarantee from a sender S to a receiver R of a
lower bound on the time stamp on the next message S will send
to R.

50.7
43.8

37.2

35.1

61.0
47.5

40.4
39.0

32 40
rarely-used channel

null message

A

B

C

D

���17

The fundamental concept needed to deal with the problems of rarely- or never-used channels, and including cyclic local deadlocks, is “lookahead”. Lookahead is a guarantee from a Sender to a Receiver (on a per-channel basis if there is more than one channel
between them) of a lower bound on the time stamps on future event messages that will ever be sent down that channel. The sender is basically saying “I don’t know when or if I will send another message down this channel. But if I ever do, I guarantee it will not
have a time stamp lower than t.” !!
A message that carries only lookahead information is often called a null message, because it is like an event message in the way it is queued and the synchronization effects it has, but it does not actually call for any event method to be executed. It contains no
information except a simTime value.In the above diagram, C is sending lookahead info in a null message to A, guaranteeing that C will never in the future send an event message to A with a time stamp less than 40. Note several things in this example:!!
1) C is sending this null message with a time stamp of 40, even though C is only at time 32 itself. C is thus “looking ahead” and making a guarantee about its own future behavior. !!
2) C can always send a null message with time 32 (its current simTime), but that is not useful “lookahead” information. In general, we want to C send the strongest lookahead information it can, i.e. a guarantee extending as far into the future as possible, and we
want C to send it as early as possible in real time during the computation. That way A can proceed with processing its event messages as smoothly as possible with minimal synchronization pauses.!!
3) Lookahead information is not needed for sequential execution of any model. Nor is it needed for optimistic execution. It is, however, a practical requirement for all conservative parallel executions. And it imposes a burden on the programmers of conservative
models to not only process and send event messages, which they have to do anyway, but also to explicitly calculate when they will not send event messages, and for how long in the future. This requires thinking about model behavior in a way that is not
necessary with other styles of PDES execution.!!
4) A’s queue does not have to be empty for C to send a null message; indeed C ordinarily will not know whether A’s input queues are empty or not. If for some reason C sends multiple null messages in a row, then only the one with the highest time stamp matters,
and the others can be thrown away when the latest one arrives.!!
5) Null messages can be sent on a “push” or “pull” basis. C can decide when to send them, e.g. whenever it is able to make a new, better estimate of its lookahead guarantee (“push”). Or, whenever the simulator finds A with an empty queue, the simulator can
send a query to C to get the best lookahead information available from C at that moment (“pull”).!!
6) There are many other variations in the protocols for the exchange of lookahead information. Sometimes an object can choose a static interval in the future as its lookahead guarantee, and never change it, whereas other times the lookahead value can change with
every event the sender executes. Sometimes the lookahead guarantee is the same for all output channels that C sends to, and sometimes it differs on different output channels. And sometimes, in a part of the computation that is way off the critical path, one can
get away without sending lookahead information at all and just tolerate the fact that that part of the model will be slow because, being way off the critical path, it does not matter to overall performance. (This last strategy is risky, however. What is on and what is
off the critical path of a simulation may change from run to run and from version to version.)!!!

17 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

How to avoid deadlock

• If any channel is starved of messages (event messages
and null messages) then a deadlock will inevitably
spread from around the receiving LP on that channel.!
• Peculiar that the lack of traffic on a channel is what causes the problem!
• This is why we cannot simply adopt the complete graph of with arcs

between all nodes!

• A simulation is deadlock free ⇔ !
every channel transmits a never-ending sequence of messages (event and
null) messages with increasing time stamps!

• Most null message algorithms are variations on this
theme:!
• Whenever an LP simulation clock increases, send updated null messages

out all channels.!
• Send additional null messages when better lookahead information is

available

���18

18 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Deadlock-free Null Message Algorithm

���19

while (true) do {!
! simTime = ∞;"
" for (all input queues Q) {"
" " if (Q.empty()) {"
" " " wait for message to arrive in Q;"
" " }"
" " if (Q.head().timestamp < simTime) ("
" " " q = Q;"
" " " simTime = Q.head().timestamp();"
" " }"
" }"
!
" if (simTime > StopTime) break;"
!
" if (!q.head().nullMessage())" {" "
" " executeEvent(q.head());"
" }"
!
" for (all output channels C) {"
" " C.sendNullMessage(simTime + lookahead)"
" }"
!
 " q.removeHead()"
}

Find input queue q with lowest
timestamp event message or null
message across all input queues,
waiting for any empty queue to be
nonempty.

Termination test

Execute event messages, but not null
messages

Discard the message

Update simTime for null messages
just as for event messages

Send updated lookahead info out all
channels, in response to both event
messages and null messages. No
deadlock if eventually lookahead > 0

The red lines are those added to the “naïve” algorithm on a previous slide to make it deadlock free. !!
Note that the input queues now contain a mixture of null messages and real event messages, (sorted within each queue of course). And either kind of message can
be the one with the lowest time stamp and can cause the simulation clock to increase.!!
This algorithm is just a clean, compact model algorithm. Many variations are possible, especially regarding when null messages are sent and what the lookahead
values are.

19 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

20

22

1821 Deadlock

50
29

28

44 27 24

48
36

32

423735

Poor lookahead leads to bad performance

���20

Consider lookahead of 0.1
at each object!
!
Allow null messages to
prompt other null
messages.!
!
Send null message out all
channels output as often
as possible

20 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���21

20

22

1821

50
29

28

44 27 24

48
36

32

423735

Let’s assume we can break this deadlock initially by identifying one safe event (by some means) -- the event message that is circled in an input queue of the South
process.!!
From now on, real event messages will be blue, and null lookahead messages will be red.!!
Each following slide will represent all 4 processes either processing one event or updating its lookahead information by sending a null message out all of its output
channels.!!
(Note that sending null messages out all output channels, in response to an incoming null message, will cause an exponential blow-up. But even ignoring that (as
we are in this sequence) it still would not always work well.

21 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���22

20

24

1821

50
29

28

44 27

48
36

32

423735

24.1

22 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���23

20

24

24
.121

50
29

28

44 27

48
36

32

423735

24.
2

23 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���24

24.2

24

24
.121

50
29

28

44 27

48
36

32

423735

24.
3

24 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���25

24.2

24

24
.124.3

50
29

28

44 27

48
36

32

423735

24.4

25 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���26

24.2

24.4

24
.124.3

50
29

28

44 27

48
36

32

423735

24.5

The last 5 slides have shown how null messages are moving around the cycle, incremented by 0.1 units of sim time with each hop. They will continue to go around
the cycle like that until a null message has arrived at the South object carrying a time stamp > 27.0. That will be 8 time around the cycle, and a total of 32 sequential
null messages. Only at that point it will it be safe for South to execute the event it has at the head of its other queue with a time stamp of 27.0. But then another cycle
of null messages will start, this time having to count up to at least 28.0, which is the time of the next lowest event message, which happens to be in West’s queue.!!
If we had chosen in this example a lookahead value of 0.01 instead of 0.1, then 10 times as many event messages would have to be transmitted, all sequentially,
before the first real event message could be executed.!!
This is not deadlock, but it can be insanely slow and waste lots of bandwidth transmitting null messages.

26 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

How much lookahead is required for good
performance?

• Lookahead should be frequent enough and large enough
to prevent the receiver from blocking excessively.!

• It is best if the lookahead value is equal to or greater that
the mean sim time delay between event messages

���27

27 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Conservative, distance metric-based
algorithm: Bounded Lag

(Boris Lubachevsky)

���28

28 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Bounded Lag Protocol

���29

Radius = λ

In the Bounded Lag protocol objects are considered to be located in a “space” and there is a “distance” between them that reflects the delay in simulation time
required for each to affect the others. In this diagram the red object is in the center of a “sphere” of radius λ, meaning that the other 4 objects within the sphere are
the only ones that can possibly interact with it in less that λ delay. In other words if an object within the sphere (other than the one at the center) is at simTime t,
then it cannot schedule and event for the red object at a time lower than t+λ.

29 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Bounded Lag Protocol

• All definitions are as of some real time snapshot during the simulation!

• D(p,q) = “distance” between objects p and q!
• distance function is a semi-metric!
• min sim time delay between an event in p and a later causally-related event in q!

• Tp = lowest sim time of any unprocessed event queued at p!

• LBTS(p) = a Lower Bound on next Time Stamp for obj p!

• λ = size of sim time “window”!
• a tuning parameter for the Bounded Lag protocol!
• λ may be global and static, but sometimes it can be dynamic, i.e. change from time to

time.!
• Globally step forward up to λ units of sim time, with full barriers and recalculation of Tmin

between steps

���30

The distance function described need not be a true metric function. The only real requirement is!!
! D(p,q)>= 0 ! ! ! Positive definiteness applies!!
But the other properties of a true metric are not required!!
! D(p,p) need not be == 0!
! D(p,q) need not be == D(q,p)! ! ! !
! D(p,q) + D(q,r) need not be >= D(p,r) ! Triangle Law need not apply!!
The term “bounded lag” refers to the fact that at any given moment all objects must have their sim clocks between Tmin and Tmin+λ, i.e. the difference in time
between the lowest and fastest simulation clocks at any instantaneous global snapshot of the simulation (the “lag”) is bounded by λ.

30 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Bounded Lag Protocol

• Bounded Lag protocol calculates LBTS(p) using the
following formula (between two barriers):!

LBTS(p) = minq for D(q,p)<λ (Tq + D(q,p))!
• Suppose λ approaches 0!

• Then the number of events with timestamps less than LBTS(p) is small,
leading to low concurrency!

• Suppose λ approaches ∞ !

• Then q ranges over all objects and LBTS is optimal, but …!
• full n2 distance table required on all LPs, and must be maintained!
• requires global min reduction for every object!!

• Choice of λ must balance greater event concurrency with
greater synchronization overhead

���31

31 PDES Course Slides Lecture 5.key - March 4, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Sources of lookahead information in a model

• node service time!
• plane arrives at airport and cannot possible depart in < 0.8 hours!
• incoming packet has to be processed for a minimum of, say, 20 msec before a reply

can be sent!

• node refractory time!
• any two planes leaving the airport must be separated by, say, > 3 minutes!
• any two outgoing packets must be separated by at least, say, 10 μsec of overhead time !

• link travel time!
• plane departs from airport and cannot possibly arrive at destination in, say, < 3 hours!
• packet latency across the continent through Internet cannot be less than, say, 10 ms.!

• clock-based scheduling!
• no plane is not scheduled to depart from airport until, say, 13:05!
• no packet can depart on a shared TDMA link (statically time sliced) at least until the

sender’s next time slice, which is, say, 600 μsec in the future

���32

Almost any property or logic in the model that constrains when an event message may be sent, or the delay into the future when it is to be processed can be a source
of lookahead information. It is up to the modeler to analyze the model and offer the best lookahead information that is feasible.

32 PDES Course Slides Lecture 5.key - March 4, 2014

